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ABSTRACT

In this paper, we present a new method to perform underdetermined
audio source separation using a spoken or sung reference signal to
inform the separation process. This method explicitly models pos-
sible differences between the spoken reference and the target signal,
such as pitch differences and time lag. We show that the proposed
algorithm outperforms state-of-the art methods.

Index Terms— Audio source separation, non-negative matrix
factorization, informed source separation.

1. INTRODUCTION

Underdetermined source separation has been a key topic in audio
signal processing for the last decade. It consists in isolating differ-
ent meaningful parts in the sound, such as isolating the lead vocal
from the accompaniment in a piece of music or the dialog from the
background music and effects in a movie soundtrack.

The problem has often been addressed within a blind source sep-
aration context using Non-negative Matrix Factorization (NMF) [1].
One of the main drawbacks of this technique is the difficulty to clus-
ter the factorized elements and associate them with a source.

Recently, numerous works proposed to add extra information in
order to improve separation results.

Different kinds of information have been considered: in [2],
the different spectral shapes of each source are learned on isolated
sounds and are then used to decompose the mixture. In [3], source
signals are used as a side information in a coder/decoder scheme. In
[4, 5], an aligned MIDI file is used to guide the separation of instru-
ments in music pieces. In [6], textual information is used to perform
separation.

In this paper we propose to use a speech signal imitating a target
speech sound to guide the separation. More particularly, we use di-
alog dubs provided by the user as a reference signal to separate the
dialog from the music and effects in a film or TV soundtrack.

A similar approach was already proposed in [7, 8] using a
method based on probabilistic latent component analysis (PLCA)
for isolating sounds in a mixture from the presentation of a hum-
ming query. This query mimics the desired target to be extracted
and serves as a prior in the PLCA decomposition of the mixture.
Unfortunately the methods suffers from robustness with respect to
small time misalignements, pitch modifications and differences in
equalization. We thus propose a new method that explicitly models
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these three issues. It is based on the adaptation of the power spec-
trogram of the provided speech guide both in pitch and time in a
non-negative decomposition framework.

In section 2, we present the spectrogram model that we use for
describing both the target signal to extract and the background. In
section 3, we present the algorithm used to estimate the model pa-
rameters. In section 4, we provide experimental results that show
that our algorithm outperforms state-of-the-art methods. Finally,
conclusions are drawn in section 5.

Notation
• Matrices are denoted by bold capital letters: M.
• Vectors are denoted by bold lower case letters: v.
• Matrix or vector sizes are denoted by capital letters: T ,

whereas indexes are denoted with lower case letters: t.
• Scalars are denoted by italic lower case letters: s. The co-

efficients at row f and column t of matrix M is denoted by
mft.

2. MODEL

As previously described, the goal of the proposed algorithm is to iso-
late a target sound, which is imitated by the user, from a background
sound. As shown in figure 1, a typical scenario is a movie sound-
track where dialogs, effects and music are all mixed together and we
want either to isolate the dialogs or to remove them: the user roughly
dubs the dialogs and the dub signal is used as a guide. Another sce-
nario would be a song in which we want to isolate or remove lead
vocals: the user would then roughly re-sing it and this signal would
be used as a guide. In both scenarios, there can be differences both
in pitch and time between the guide and the target signals. This is
why we propose a model which deals with these two issues. The
guide signal is not restricted to be user-provided speech and could
be anything else that is close enough to the target signal, such as a
slightly modified version of the target signal (e.g., the target signal
could have playback speed differences with the guide signal).

We work with power log-frequency spectrograms that are de-
fined as the squared modulus of the constant-Q transform [9] (CQT)
of the waveforms. The shift invariance property of the CQT (a pitch
modification can be modeled by a simple vertical shift) is central in
the model we propose.

For the sake of clarity, we will present the signal model for mono
signals only although it can be easily generalized to multichannel
signals using an extra panoramic parameter. In the experimental sec-
tion, we actually use a stereo signal model.



Fig. 1. Separation scenario.

The power spectrogram of the user guide sound is aF×T matrix
denoted by Vg and the power spectrogram of the mix to be decom-
posed is a F × T matrix denoted by V (the guide and mix signals
are supposed to be of the same temporal length, but it is straightfor-
ward to consider slightly different lengths). A common assumption
in non-negative spectrogram decomposition is to model the spectro-
gram of the mix as the sum of the spectrogam of the target signal V̂t

and the spectrogram of the background signal V̂b (the hat refers to
the quantity to be estimated). We aim at estimating both these model
spectrograms in order to approximate the mix spectrogram V:

V ≈ V̂ = V̂t + V̂b (1)

Once V̂t and V̂b are estimated, the separation is then performed
with Wiener filtering using the estimated power spectrogram as a
time-varying power spectral density.

2.1. Target signal model

The model of the target source is derived from the guide spectrogram
Vg using three different kinds of adaptation:
• a pitch shift operator is applied in order to compensate pitch

differences between guide and target signals.
• a synchronization matrix is used to prevent slight temporal

misalignments between guide and target signals as proposed
in [10].

• a global adaptation filter is also applied in order to correct
global spectral differences (equalization) between guide and
target signals.

All these parameters are constrained to be non-negative.

2.1.1. Pitch shift operator

The pitch shift operator is a Φ × T matrix P. It acts as a vertical
shift operator on each time frame t of the guide spectrogram Vg , as
in [11]. Spectrograms being computed with a CQT, a shift of a spec-
trogram frame corresponds to a pitch modification. The operation
can be written:

Vg
shifted =

∑
φ

↓φ
Vgdiag(Pφ,:)

 (2)

where
↓φ
Vg stands for Vg shifted downward by φ bins (i.e. [

↓φ
Vg]f,t =

[Vg]f−φ,t), and diag(Pφ,:) is the diagonal matrix with the φ-th row

of P as diagonal.
The pitch shift operator is supposed to model possible differ-

ences between instantaneous pitch of the guide and the target sig-
nals. In practice, only one shift should be kept (and not a linear
combination of all the shifts) so that the correct shift will be tracked
(see section 3).

2.1.2. Synchronization matrix

The T × T synchronization matrix S allows a temporal alignment
margin between the guide spectrogram and the target signal spectro-
gram: time frames of the target spectrogram are modeled as a linear
combination of the neighboring time frames of the (pitch-shifted)
guide spectrogram1. This makes it possible to take time misaligne-
ments (even time-varying ones) into account. This adaptation is ex-
pressed as:

Vg
sync = Vg

shiftedS (3)

where S is a band matrix i.e. there exists w ∈ N such that for all
(t1, t2), if |t1− t2| > w, then st1t2 = 0. The width w of the central
band corresponds to the misalignement tolerance in time frames. A
large width will thus result in a large tolerance but at the price of
a worse estimation of the model parameters. Only one (or a few)
frames of the guide signal correspond to a frame of the guide signal
and the correct synchronization may be tracked in the matrix S.

2.1.3. Adaptation filter

As proposed in [12], the adaptation filter parameter is a F ×1 vector
f that acts as a global filter on the model. The global spectrogram
model of the target signal is then:

V̂t = diag (f)

∑
φ

↓φ
Vgdiag(Pφ,:)

S (4)

where diag (f) is a diagonal matrix with f as the main diagonal.

2.2. Background signal model

As we do not have any information about the content of the back-
ground, we use a very common generic model. Standard NMF seems
to be well adapted to this purpose. Thus, the power spectrogram of
the background signal is modeled as:

V̂b = WH (5)

where W is a F × R non-negative matrix and H a R × T non-
negative matrix with R � F, T (the choice of R is important and
depends on the application). Columns of W can be thought of as
atomic spectral templates and H as the activation weights of these
templates over time.

3. ALGORITHM

3.1. First estimation of parameters

In order to estimate the parameters of the target signal model and the
background signal model, an element-wise divergence cost function

1For simplicity, a square synchronization matrix is assumed, but an ex-
tension to non-square matrices is straightforward.



is minimized with respect to these parameters:

C(Θ) = D(V|V̂t + V̂b) =
∑
f,t

d(vft|v̂tft + v̂bft) (6)

In this paper, we use the Itakura-Saito divergence which is a very
popular divergence in audio processing:

d(x|y) =
x

y
− log

x

y
− 1 (7)

The minimization is done with multiplicative update rules which are
successively applied to each of the model parameters: W, H, f , S
and P.

We follow a classical approach to derive the update rules: the
gradient of the cost function with respect to each parameter is writ-
ten as a difference of two positive terms and the update rule is a
multiplication by the ratio of these two terms. This notably ensures
that parameters remain non-negative at each update and become con-
stant if the partial derivative of the cost function with respect to the
considered parameter tends to zero. Moreover, parameters evolve in
a local descent direction.

We thus get the following update rules for the parameters of the
target spectogram model:

f ← f �

((∑
φ

↓φ
Vgdiag(Pφ,:)S

)
�V � V̂�−2

)
1T((∑

φ

↓φ
Vgdiag(Pφ,:)S

)
� V̂�−1

)
1T

(8)

S ← S�

(∑
φ diag (f)

↓φ
Vgdiag(Pφ,:)

)
�V � V̂�−2

(∑
φ diag (f)

↓φ
Vgdiag(Pφ,:)

)
� V̂�−1

(9)

Pφ,: ← Pφ,: �
fT

(
↓φ
Vg �

((
V � V̂�−2

)
ST
))

fT

(
↓φ
Vg �

(
V̂�−1ST

)) (10)

where � stands for the element-wise matrix (or vector) product,
(.)�(.) stands for element-wise matrix exponentiation, (.)T stands
for the matrix transposition, 1T is a T × 1 vector with all coeffi-
cients equal to 1 and Pφ,: is the φ-th row of P.

The update rules of W and H are standard multiplicative update
rules for NMF with Itakura-Saito cost function [13].

All parameters are initialized with random non-negative values.

3.2. Shift value estimation and refining

As already stated, a target spectrogram frame is modeled (up to filter
adaptation and synchronization) as a linear combination of pitch-
shifted versions of the corresponding frame in the guide spectro-
gram. As our model intends to describe small differences in pitch,
only one shift should be kept at each time frame. We thus introduce
a tracking step to estimate the correct pitch shift value at each time
frame within matrix P. We propose to use Viterbi tracking such as
in [14] where the tracking is done on a pitch matrix (estimation of
the best pitch) instead of a pitch shift matrix.

Once the correct pitch shift has been tracked, coefficients of ma-
trix P which do not correspond to the tracked path are set to 0. In
practice we allow a small margin around the tracked pitch for two
reasons: first, pitch shifts are quantized in the model but are contin-
uous in real cases and second, the tracking algorithm might produce

small errors. Then, parameters are reestimated using the update rules
of section 3.1 with the thresholded version of P (as update rules are
multiplicative, coefficients set to 0 will remain 0).

It should be noted that, as already suggested, it might also be
necessary to track the right lag in the synchronization matrix using,
for instance, dynamic time warping. We chose not to describe it
here, as in the tested application the algorithm provided better re-
sults without synchronization tracking: this might be linked to a bad
tracking or to the fact that thresholding the synchronization matrix
might over-constrain the model.

4. EXPERIMENTAL RESULTS

4.1. Experimental setup

We tested the algorithm on a task of dialog isolation/removal in
movie soundtracks. As a comparison, we tested three other sepa-
ration algorithms: the first one is uninformed and is based on the
main melody extraction method proposed in [14], which is a state-
of-the-art blind method for this kind of task. The second one is the
PLCA-based speech-informed separation algorithm proposed in [7].
The third one is the same algorithm as the first one but informed with
instantaneous pitch of the target signal as in [15]. The comparison
with the first algorithm intends to show that adding extra informa-
tion can significantly improve separation results. The comparison
with the second algorithm intends to show that with the same extra
information, our algorithm performs better. The comparison with
the third algorithm intends to show that our algorithm performs as
well as another informed scenario but with a less tedious user input.
We also present the results of a Wiener oracle for the CQT represen-
tation (oracles are obtained using the original sources to build CQT
Wiener masks) which can be thought of as an upper performance
bound.

We built a database of synthetic movie soundtracks. Each ex-
cept of the database was created mixing two different parts of a same
movie soundtrack, the first one containing only dialog and the sec-
ond one containing only music and effects. For each excerpt, mix-
ing coefficients were estimated from parts of the same movie where
dialog, music and effects were active all together and based on loud-
ness2 difference in order to create realistic mixes.

The database consists of 10 extracts from 5 different movies.
All soundtracks were mixed down to mono signals. In all movies,
dialogs are in english. All the excerpts were dubbed using the mix
signal as a reference. All dubbings were done by the same male
native english speaker. The same dubs were used for both speech
informed algorithms (PLCA-based and the one that we propose).

Spectrograms were computed using the CQT implementation
proposed in [9], with fmin = 40Hz, fmax = 16000Hz and 48 bins
per octave.

4.2. Results

In order to quantify results we use standard metrics of source sepa-
ration as proposed in [16]: Signal to Distorsion Ratio (SDR), Signal
to Artefact Ratio (SAR) and Signal to Interference Ratio (SIR). Re-
sults are presented in figure 2 for the extracted dialog tracks and in 3
for the music and effects tracks. As can be seen, results of the blind
method are significantly lower than any informed method in both
cases, which confirms the benefits of informed methods. We can also
notice that the PLCA-based speech-informed separation performs
significantly worse than the method we propose. The comparison

2Loudness is defined following recommendation ITU-R BS.1770-2



between the pitch-informed method and ours is less clear: differ-
ences in terms of SDR are not significant (less than 0.2dB, which
is about the same difference as between two consecutive runs with
different initializations for all the proposed algorithms). Results in
terms of SAR and SIR are about the opposite from the dialog extrac-
tion task to the dialog removal task. Thus, it is not possible to draw a
conclusion from these metrics. As the differences are clearly audible
(artefacts are quite different), we performed an internal blind listen-
ing test based on the MUSHRA protocol. 5 sound engineers were
asked to rate the ”usability” of each sound for the dialog extrac-
tion task only. A pairwise t-test on the listening test results showed
that the results of our algorithm are globally preferred in terms of
”usability” over the results of the pitch-informed algorithm (p-value
= 0.0017). These last subjective results should be however taken
with care since the number of participants was low and should thus
be considered as a preliminary study.

Fig. 2. Separation results for dialog extraction.

Fig. 3. Separation results for music and effects extraction (dialog
removal).

5. CONCLUSION

In this paper we proposed a new method to perform source separa-
tion providing a spoken guide and showed that this method outper-
forms a state-of-the-art one. Future work should focus on speeding
up the algorithm since the proposed algorithm is a bit slower than the
ones we compared it with. Moreover, other kind of adaptation such
as formant adaptation might also be considered in order to get a bet-
ter fit of the target from the guide. Hard introduction of the guide
spectrogram in the model of the target spectrogram could also be re-
placed with soft introduction using priors. Finally, as the system we
propose does not assume any voice model on the guide signal, other
kind of signal can be used as a guide, opening the way for other
applications.
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