Speech-guided source separation using a pitch-adaptive guide signal model **Romain HENNEQUIN**, Juan-José BURRED, Simon MALLER, Pierre LEVEAU

Audionamix, 171 quai de Valmy, 75010 Paris, France

Introduction

New method to perform underdetermined audio source separation using a spoken or sung reference signal to inform the separation process.

- Explicitly models differences between reference and target signal.
- Outperforms state-of-the-art methods.

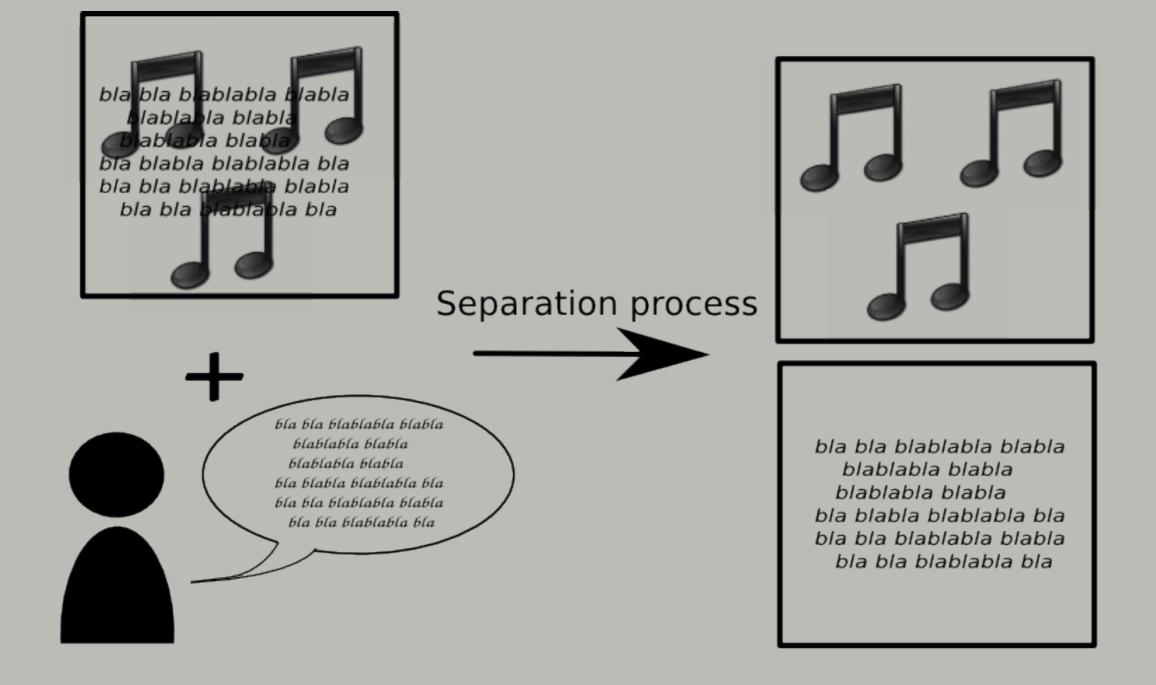
Typical scenario

Isolate a target sound, imitated by the user, from a background sound. Isolation/removal of dialogs in a movie soundtrack.

Algorithm

First estimation of parameters Minimization of Itakura-Saito divergence: $\mathcal{C}(\mathbf{P}, \mathbf{f}, \mathbf{S}, \mathbf{W}, \mathbf{H}) = D_{IS}(\mathbf{V}|\hat{\mathbf{V}}^t + \hat{\mathbf{V}}^b), (\text{s.t. } \mathbf{P}, \mathbf{f}, \mathbf{S}, \mathbf{W}, \mathbf{H} \ge \mathbf{0})$ using multiplicative update rules.

Tracking

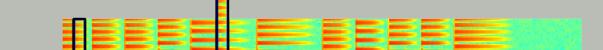

Tracking of the best pitch shift in P using Viterbi algorithm.

Tracking of the best synchronization in S using DTW. Thresholding of **P** and **S** then parameters reestimation.

Separation

Separation is achieved using Wiener Filtering and CQT inversion.

Isolation/removal of lead vocal in a song.


Issues: differences between guide and target signal: pitch differences: absolute pitch, intonation, vibrato...

time differences: misalignments.

equalization/timbre differences.

Model

Input spectrogram

Experimental results

Experimental setup

Dialog isolation/removal in movie soundtracks. Compared with other separation algorithms:

- Main melody extraction method proposed in [1].
- PLCA-based speech-informed separation algorithm [2].
- First one but informed with instantaneous pitch of the target signal [3]. CQT Wiener oracle as an upper performance bound.

Database

Mix signals:

Dubs:

- ~ 10 excerpts from synthetic movie \sim using the mix signal as a soundtracks. reference.
- 5 different movies in english. Excerpt = dialog only part +
- music and effects only part mixed down to mono.

Objective results

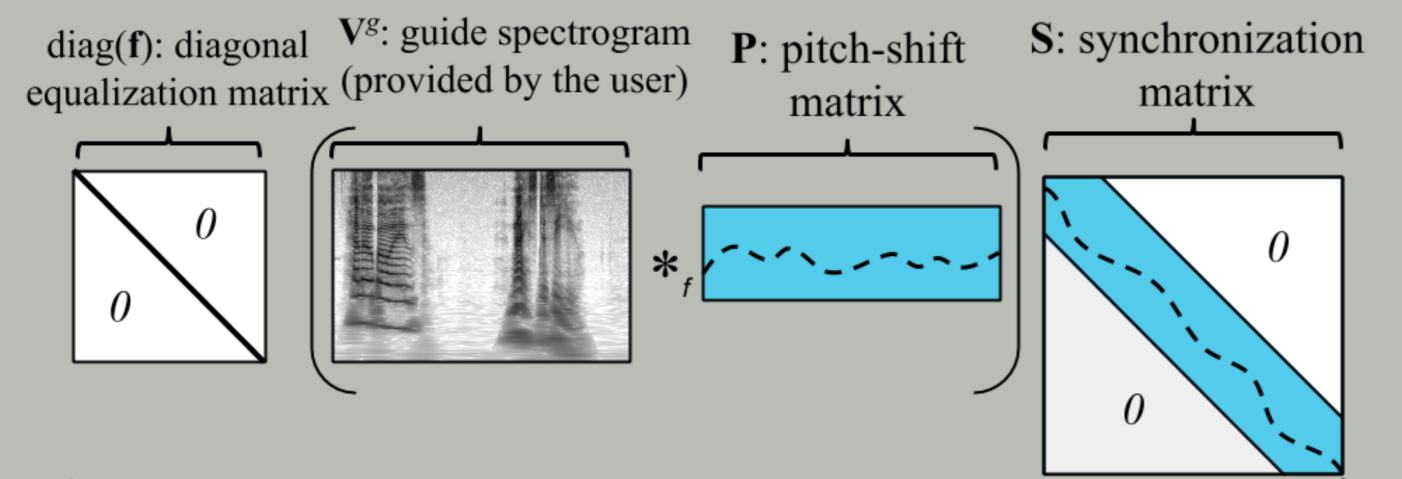
Blind

- Done by the same male native english speaker.
- Same dubs for both speech informed algorithms.

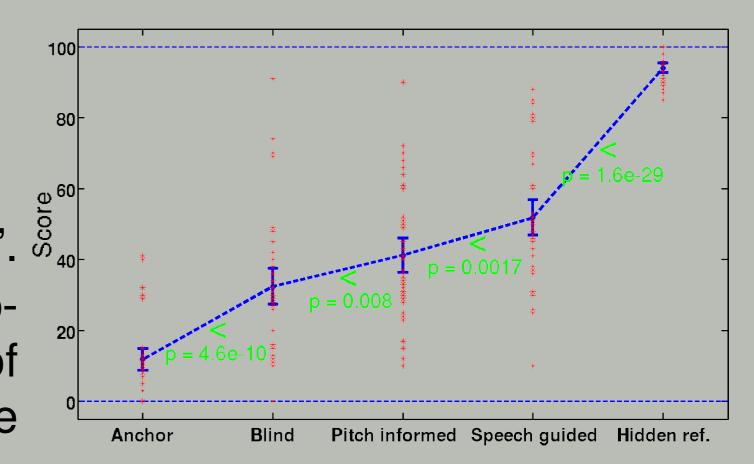
V: power log-frequency spectrogram (Constant-Q transform) of the mixture signal.

Shift invariance property: a pitch modification can be modeled by a vertical shift.

Non-negative spectrogram model


 $\mathbf{V} \approx \hat{\mathbf{V}} = \hat{\mathbf{V}}^t + \hat{\mathbf{V}}^b$

V^t: target signal model. $\hat{\mathbf{V}}^{b}$: background signal model.


Time (seconds

Target signal model:

 $\hat{\mathbf{V}}^t$ is adapted from the guide spectrogram \mathbf{V}^g :

Listening tests Internal blind listening test: Dialog isolation only. ▶ 5 (few!) participants. MUSHRA protocol. ▶ Rating according to the "usability". 🖏 Results of our algorithm globally preferred over the results of the pitch-informed algorithm (to be taken with care)

Conclusion

\mathbf{V}^{t} : target signal model

Pitch shift operator **P**:

$$V^{g}_{\mathsf{shifted}} = \left(\sum_{\phi} \overset{\downarrow \phi}{\mathbf{V}^{g}} \mathsf{diag}(\mathbf{P}_{\phi,:})
ight)$$

Global adaptation filter f and synchronization matrix S:

$$\hat{\mathbf{V}}^{t} = \text{diag}\left(\mathbf{f}\right) \left(\sum_{\phi} \bigvee_{\varphi}^{\phi} \text{diag}(\mathbf{P}_{\phi,:})\right) \mathbf{S}$$
Background signal model

Standard Non negative Matrix Factorization (generic model): $\hat{\mathbf{V}}^b = \mathbf{W}\mathbf{H}$

- New method to perform source separation providing a spoken guide. Outperforms a state-of-the-art one and methods performing same task. Future work:
 - No voice model on the guide signal: any kind of signal can be used. Many other applications.
 - Other kinds of adaptation (formant adaptation...).
- Speeding up the algorithm.

References

J.-L. D. et al., "An iterative approach to monaural musical mixture de-soloing," in *ICASSP*, 2009.

P. Smaragdis and G. J. Mysore, "Separation by humming: User-guided sound extraction from monophonic mixtures," in WASPAA, 2009.

J.-L. Durrieu and J.-P. Thiran, "Musical audio source separation based on user-selected f0 track," in *LVA/ICA*, 2012.

http://www.audionamix.com

ICASSP 2014, Florence, Italy, May 6-9 2014