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ABSTRACT

In this paper, we propose a method for detecting marks of lossy com-
pression encoding, such as MP3 or AAC, from PCM audio. The
method is based on a convolutional neural network (CNN) applied
to audio spectrograms and trained with the output of various lossy
audio codecs and bitrates. Our method shows good performances on
a large database and robustness to codec type and resampling.

Index Terms— Audio encoding detection, audio quality detec-
tion, Convolutional Neural Network

1. INTRODUCTION

Generic perceptual audio codecs, such as MP3 [1], AAC [2], Vorbis
[3], WMA, AC3 and others, are a popular tool with which to reduce
audio files size and make the sharing of these files easy. These types
of codec have been widely used since their creation in the 90s. This
popularity has led to misuse of the codecs, such as reencoding audio
from a low bitrate to a higher bitrate or back to Pulse Code Modu-
lation (PCM). Reasons for this could be a misconception that it will
result in better quality (bitrate being generally strongly associated
with quality), or an intention to cheat on the actual quality of the
audio content.

This kind of misuse can also be found in content that is provided
to musical streaming services by record labels. At Deezer, record la-
bels are asked to provide music files in FLAC (Free Lossless Audio
Codec) format. FLAC is a lossless audio codec that slightly reduces
audio file size and that is strictly equivalent to PCM in terms of audio
content. For various reasons, it is not uncommon that a small number
of audio files delivered to Deezer clearly shows artifacts character-
istic of lossy codecs: this indicates that the audio content has been
compressed with a lossy codec, maybe for more compact archiving,
and then decoded back to PCM before being delivered to Deezer.

Several musical streaming services (including Deezer) have spe-
cific offers to stream audio in CD quality (PCM 44100Hz, 16bit) and
some specialized online music stores charge more for lossless audio
than for lossy ones. Ensuring that audio files provided by the labels
have not been previously compressed with a lossy coder is, therefore,
of particular interest.

This paper proposes a method for detecting whether PCM audio
content had been previously encoded in a lossy format. PCM audio
that had not been previously encoded with lossy codec will be re-
ferred to as unaltered audio, and audio that was previously encoded
(possibly multiple times) by a lossy codec as altered audio.

Generic perceptual audio codecs use psychoacoustic principles
to reduce file size by allocating less information in time/frequency
areas where the audio content is supposed to be less audible. These
codecs produce artifacts that result in characteristic patterns in au-
dio spectrograms such as high frequency cuts, ruptures between fre-
quency bands and the presence of holes or isolated clusters. These

spectrogram artifacts are especially visible when spectrogram pa-
rameters (window duration, hop size, window type) match those
used by the codec, but can also be seen at different resolutions.

The contribution of this work is to propose a codec-independent
system that relies only upon detecting characteristic patterns of spec-
trogram from perceptual compressed audio. This is possible because
we use a generic classification system designed to detect patterns in
2D inputs. Moreover, we do not make use of framing detection, a
common step in encoding detection systems, that considerably in-
creases their computational cost. The method we propose is there-
fore fast enough to make scaling to a catalog comprising tens of
millions of tracks possible.

The rest of the paper is organized as follows: in Section 2 we re-
view previous works on lossy compressed audio detection, in Section
3 general characteristics of perceptual audio codecs are presented,
in Section 4, we describe how the database that we used for train-
ing and testing the proposed algorithm was built, in Section 5, we
present the system that we used, in Section 6, we report the results
that we obtained with the proposed method, and finally, conclusions
and perspectives are drawn in Section 7.

2. PREVIOUS WORKS

Several papers have already addressed the problem of double encod-
ing detection or bitrate detection from PCM, but most of them are
dedicated to a single type of codec. In [4], a method to estimate the
bitrate of decoded MP3Pro audio is proposed. It uses explicitly the
structure of the MP3Pro encoder, especially Spectral Band Repli-
cation. In [5], double MP3 compression detection is addressed us-
ing statistics on the quantized Modified Discrete Cosine Transform
(MDCT) coefficients. In [6], MP3 bitrate is estimated with high ac-
curacy using a Support Vector Machine classifier on the 16kHz to
20KHz band of spectrograms. However, this method does not detect
unaltered audio, and although it might generalize to other codecs, re-
sults were reported for MP3 only. In [7], AAC encoding parameters,
such as filterbank and quantization parameters, are estimated from
the audio in order to regenerate the coded bitstream. Once again, the
algorithm is designed for AAC only. In [8], the same kind of algo-
rithm is proposed for MP3. In [9], bitrate detection and distinction
from unaltered PCM is done with quite high accuracy on AAC en-
coded audio using a convolutional neural network (CNN). Although
the CNN is a very generic and robust classifier, the input features
were tailored to highlight MDCT coefficient quantization, and the
method cannot adapt easily to other codecs. This kind of engineered
features approach would result in an exponential increase in possi-
bilities to take into account, and would therefore not be worth con-
sidering to deal with multiple codecs with different characteristics.

Detection of traces of lossy compression was also used for tam-
pering detection in [10, 11] for a limited set of codec types.

All these papers use framing detection as a first step. Framing



detection consists of retrieving the original position of the encoding
frames in the audio. The knowledge of the framing is a huge prior
for detecting bitrates/traces of lossy compression since it allows us
to retrieve the quantized coefficients exactly. However, detecting
the frame grid is computationally very costly because the filter bank
representation must be computed for every sample offset and every
parameters of the filter bank. Moreover, framing is codec-dependent
and considering all possible framing for a large set of codecs results
in a high computation complexity which makes it unsuitable for large
scale detection. Finally, it is not robust to a lot of simple transforma-
tions such as resampling, small edits or multiple encoding.

In [12], the number of inactive or weakly active coefficients is
used to detect double encoded MP3 without addressing the frame
synchronization problem. However the paper deals exclusively with
low bitrates for MP3 only. In [13], a generic method for bitrate
detection is presented for multiple codecs, however, discrimination
of unaltered audio from altered audio is done only for low bitrates
(64kbps and below). Results for altered/unaltered discrimination are
outperformed by those produced by our approach.

As opposed to these specialized approaches, our system is de-
signed to be agnostic to the type of codec used, and to rely only
upon common codec characteristics. As any encoder, possibly sev-
eral, may have altered the final version of the audio, it is important
to propose an algorithm that is codec-independent.

To the authors’ knowledge, this is the first paper that addresses
detecting lossy compression from multiple codecs. Moreover, this is
the only paper to include a training database of several thousands of
audio files.

3. PERCEPTUAL CODECS CHARACTERISTICS

3.1. Codecs description

Lossy audio codecs usually rely upon a quantization of time-
frequency coefficients parametrized by a psychoacoustic model.
The time-frequency coefficients are generally computed using the
MDCT and are sometimes combined with a polyphase filter bank
(for instance MP3 [1]). Lossy compression algorithms usually group
MDCT coefficients into non-uniformly spaced frequency bands to
operate quantization. The effect of strong quantization is particularly
visible in spectrograms: 0-bit quantization results in some frequency
bands having all coefficients set to 0. This is very common for low
bitrates, for which not encoding the high frequencies at all is quite
a good psychoacoustic choice. 1-bit quantization results in holes or
isolated non zero coefficients.

Generic perceptual audio coders are composed of the following
parts, as represented in Figure 1:

• A filter bank: the signal is decomposed in frequency bands,
using a MDCT and/or a Polyphase Quadrature Filter (PQF).

• Psychoacoustic model: masking thresholds are estimated.

• Quantization: the output coefficients of the filter bank are
quantized according to the psychoacoustic model in order to
make the quantization noise as inaudible as possible.

The quantized signal is then encoded and compressed with loss-
less algorithms but this part does not alter the signal further. The
filter bank being invertible, the only phase at which the signal is al-
tered is during quantization.

The parameters of the filter bank depend on the codec: MP2,
uses a 32 band Polyphase Quadrature Filter. MP3 uses an hybrid
filter bank composed of the same PQF as in MP2 followed by a
MDCT with 6 or 18 frequency bands depending on the stationary

Fig. 1. Generic perceptual encoder scheme.

or transient character of the audio. All other codecs used in this
paper use a MDCT as the filter bank with varying numbers of fre-
quency bands: AAC uses a MDCT switching between 128 and 1024
frequency bands, Vorbis uses any power of 2 between 32 and 4096,
AC3 uses 128 or 256 and WMA uses any power of 2 between 128
and 2048.

3.2. Common artifacts of encoded signals

In this section, we review the kind of artifacts produced by lossy
audio codecs. Rather than describing these artifacts from a percep-
tual perspective, we focus on characteristic patterns (see Figure 2)
that are frequently encountered in time/frequency representations of
encoded audio signals, such as:

1. High frequencies cut (due to quantification with 0 bits in high
frequency bands, these bands being considered less informa-
tive by the underlying psychoacoustic model of the codec).

2. Ruptures between frequency bands (due to different global
scale factors between bands).

3. Holes/isolated clusters in the spectrogram (due to very low
bit quantization in some time/frequency areas).

Fig. 2. Codecs artifacts in spectrogram. From left to right: unal-
tered audio, compression with AAC@320kps and compression with
MP3@192kps.

4. DATABASE DESCRIPTION

Supervised classifiers usually require considerable amounts of anno-
tated samples from which to learn their internal parameters. In our
case, we need a large database containing uncompressed audio files
and altered ones. However, such a database is not easy to gather
(even for music streaming companies that have access to millions
of files) since, as mentioned earlier, a fair amount of provided PCM
audio files cannot be considered as unaltered audio.



To tackle this problem, we create a database by an iterative pro-
cess of semi-automatic cleaning of uncompressed audio files. In
the first step, we gather FLAC files, generate compressed versions
of them and train a classification system. Then we remove suspect
FLAC files misclassified by the system and iterate by retraining the
system with the new, cleaner database. The cleaning thus consists in
iterative steps of:

• Training the classifier to discriminate unaltered audio from
lossy compressed audio on the current state of the database.

• Manually checking unaltered audio files that were classified
as altered by looking for clear evidences of lossy compression
marks at the spectrogram of these audio files.

• Removing the files that showed clear evidences of alteration
in the previous steps from the unaltered database.

This procedure reduces the number of manual annotations required
to a fairly small set, considering the size of the large database needed
for training. This first step of cleaning might include a bias since re-
moved files from this first step are probably the most challenging to
classify. While aware of this limitation, the satisfactory error rates
obtained in different tasks by our system show an effective proce-
dure.

Finally, the generated database is split into training, validation
and test databases, and samples from validation and test databases
are manually verified (following the same procedure as above) to
ensure that they contain only clean, uncompressed audio files.

Our original collection of unaltered files was composed of 30k
FLAC files randomly chosen using MD5 hashes. This collection is
representative of Deezer catalog: it contains mainly music from var-
ied genres but it may also contains some speech (e.g.: audio books).
We remark that a small bias on duplicated songs with almost identi-
cal signals but different MD5 could be introduced in this way.

The altered audio files were encoded with AAC [2], MPEG1
audio layer 3 (MP3) –using the LAME encoder–, Vorbis, Windows
Media Audio 7 (WMAV1), Windows Media Audio 8 (WMAV2),
MPEG1 audio layer II (MP2) and Dolby AC-3 (AC3) codecs. The
last two were used because they are the standard codecs for DVD,
and thus might be common for decoded audio that come from video.
Various bitrates were used (32kbps, 64kbps, 96kbps, 128kbps,
192kbps, 256kbps and 320kbps) for all codecs except for Vorbis
that does not support a constant bitrate parameter but only a quality
parameter. All quality values from 1 to 7 were used for the later
codec. Only one encoder was used for each codec. Notice that
although there can be differences between encoders, we considered
that such variability should be far less important than differences
between different codecs.

As expected, this first iteration of the procedure found a quite
large number (about 10%) of files that were previously encoded with
a lossy codec. We stopped the procedure when the rate of suspect
unaltered files fell under 1% (about ten steps). The final database
contained 26844 files of uncompressed audio.

All three datasets (training, validation, test) do not contain ex-
cerpts coming from the same file. Classes (Altered/Unaltered) were
balanced in each dataset.

5. SYSTEM DESCRIPTION

5.1. Convolutional Neural Network

CNNs have been successfully used in several areas, becoming
the state-of-the-art method, in particular image classification [14].
CNNs were also already used for codec analysis in [9] with a similar

architecture as the one we propose, but using frame-aligned MDCT
coefficients as features that were optimized for AAC. As CNNs
are very efficient at retrieving patterns in image, it is quite natu-
ral to think that they are able to detect the typical artifact patterns
described in Section 3.2.

We use a classical network architecture consisting of 4 convolu-
tional layers followed by 3 fully connected layers. Every convolu-
tional layer is followed by a 2 × 2 max-pooling layer, has rectified
linear-unit activation, 16 output feature maps and uses 3× 3 filters.

The two first fully connected layers have rectified linear-unit ac-
tivation and 256 hidden cells. Dropout is used at training in these 2
layers in order to reduce over-fitting. The last fully connected layer
has a softmax activation and 2 outputs that model the probability of
being in the altered class or in the unaltered class. The class with
the maximum probability was chosen as the output of the classifier.
Spectrograms as described in Section 5.2 are used as inputs.

The network was trained according to a cross entropy loss func-
tion, with mini-batch gradient descent with adagrad optimization
using 10-samples batches. Stabilization of validation error was
reached after a few epochs (usually about 10 epochs).

5.2. Choice of features

As generic perceptual codecs are usually based on a bank filter gen-
erally using a MDCT it is quite clear that a time-frequency represen-
tation with linear frequency scale can be a good choice. Although it
may be tempting to just use MDCT (or several stacked ones) recall
that:

1. As commonly reported in the literature [6, 8, 9, 10], if MDCT
is not aligned on the original framing grid of encoding, the
quantized coefficients are far less visible.

2. Sample rate of the audio signal may have been changed after
decoding, which makes frame synchronization useless.

3. MDCT is usually switching dynamically between several
frame sizes, based on the audio content (stationary or tran-
sient).

4. Different codecs use different number of frequency bands.

Unlike the MDCT, spectrograms computed from Short Time
Fourier Transform (STFT) mostly encompass small time offset in the
phase component, which can be discarded. Using the STFT magni-
tude spectrogram instead of a non-synchronized MDCT allows fast
computation while still revealing most compression artifacts. We
thus chose it as input features of our classifier.

We found that a window size of 512 samples with 50% over-
lap and a Hamming window gave the best performance. Results
reported in Section 6 were obtained with these values. Spectrogram
were computed on 10s excerpts of audio. Spectrograms were pre-
processed with a log (dynamic compression) and then standardized
(transformed to 0 mean and unit variance).

6. RESULTS

6.1. Main experiment

We first report results for the main experiment of altered/unaltered
classification. We observed a detection rate of 98.6%. The confusion
matrix in Table 1 shows that the error is dominated by altered audio
examples being classified as unaltered.

In comparison to the 99.1% rate of unaltered audio detected as
unaltered by our system, [13] reports a 89.6% rate, and [9] reports a
96.9% rate for unaltered audio detected as unaltered in their bitrate



classification task, the former being limited to low bitrates (64kbps
and under) and the latter being restricted to AAC only.

Classified Altered Classified Unaltered
Is Altered 98.1% 1.9%
Is Unaltered 0.9% 99.1%

Table 1. Altered/Unaltered audio confusion matrix.

Detection rates are reported for each codec and each bitrate in
Table 2. For sake of clarity, detection rates of 100% are not dis-
played. Errors are very low for bitrate under 192kbps: all error rates
are under 1%. Error rates for bitrates above 192kpbs are also un-
der 1% with the exception of AAC at 320kbps and at 256kbps and
MP3 at 320kbps. For such high bitrates, artifacts are very weakly
perceptible in spectrograms, as can be seen in Figure 2. This is why
the CNN fails at detecting typical artifact patterns. This is especially
true for AAC at 320kbps where the performance of the classifier col-
lapses to an error rate of approximately 98%. A possible explanation
for such a low performance is a failure to manually detect AAC at
320kbps alteration in spectrograms while creating the database (see
Section 4).

Codec Bitrate Detection rate
ac3 192k 99.3%
mp2 192k 99.2%
vorbis 6 99.1%
wmav1 32k 99.1%
mp3 32k 99.1%
flac 99.1%

Codec Bitrate Detection rate
mp3 192k 99.0%
wmav1 192k 99.0%
mp3 320k 98.1%
aac 256k 94.3%
aac 320k 2.3%

Table 2. Detection rate for each codec/bitrate.

It is worth noting that errors are more or less ranked accord-
ing to their seriousness, low bitrates having very low error rates and
higher error rates happening for high bitrates. This is consistent with
perceptual measures of quality on compressed audio.

6.2. Robustness analysis

6.2.1. Detection of unknown codecs

As our approach aims to be codec independent, it is important to test
that the system is able to adapt to other generic codecs and detect
alteration of audio from an unknown codec. We therefore performed
a similar experiment as that presented in Section 6.1 but removing
all audio encoded with Vorbis in the training and in the validation
dataset. Thus the system was not able to learn from Vorbis encoded
material. Results are reported for each codec in Table 3. They are
very similar to those reported in Section 6.1, in particular perfor-
mance on Vorbis are almost unaffected, which shows that the system
is able to detect altered audio from other codecs than the one against
which it was trained.

6.2.2. Detection with changing sampling rate

In a similar way, our approach aims to be robust to sampling rate
changes in the history of audio material: if a piece of audio was en-
coded with a generic codec with sampling frequency 48kHz and af-
ter decoding resampled to 44.1kHz, frame synchronized techniques
will fail at detecting alteration. We tested our system for robust-
ness to sampling frequency change. The first attempt was to change
only the test database by adding signals resampled from 44.1kHz

Codec Bitrate Detection rate
flac 99.3%
ac3 192k 99.3%
mp3 128k 99.1%
mp3 32k 99.1%
wmav1 32k 99.1%
mp3 192k 99.0%

Codec Bitrate Detection rate
wmav1 192k 99.0%
vorbis 6 98.3%
mp3 320k 96.2%
aac 256k 95.3%
aac 320k 0.0%

Table 3. Detection rate for each codec/bitrate for the codec robust-
ness experiment.

to 48kHz, then compressed at 48kHz and then resampled back to
44.1Hz. This unfortunately led to quite bad classification results, the
system being unable to generalize to previously unseen sample rates.
However, as there are only a few commonly used sample rates (the
two most common for musical content being 48kHz and 44.1kHz),
we conducted a new experiment by adding signals with sampling
rate changes to the training database and in the validation database.
The global detection rate was 98.4% and results detailed by codec
are reported in Table 4: once again, they are very similar to the ones
reported in Section 6.1, with a slight decrease of detection rate of
unaltered audio files. This confirms that the approach can be robust
to sample rate changes if the system is trained with examples that
had such a change.

Codec Bitrate Detection rate
ac3 192k 99.3%
wmav2 64k 99.2%
mp2 320k 99.2%
wmav2 320k 99.1%
wmav1 320k 99.0%
mp3 256k 98.7%
mp3 192k 98.5%

Codec Bitrate Detection rate
aac 192k 98.4%
flac 98.4%
wmav1 256k 98.2%
mp3 320k 98.1%
wmav1 192k 96.9%
aac 256k 95.8%
aac 320k 32.4%

Table 4. Detection rate for each codec/bitrate for the sampling rate
robustness experiment. Only rates under 99.5% are reported.

7. CONCLUSION

In this paper, we presented a CNN-based method to detect audio that
has been compressed using a perceptual codec from PCM material.
To the authors knowledge, this is the only study that includes many
different codecs and that uses a database of 26844 unaltered audio
files. The method reaches a detection rate of 98.6% which is compa-
rable to state-of-the-art methods designed for a single codec, while
being robust to codecs and sampling rate changes.

Future works may focus on detecting artifacts that are the most
likely to be audible, thus estimating an actual perceptual quality of
the audio content. It may also be interesting to include non-generic
codecs in a future study, such as speech codecs. As it is probably
easy to cheat the algorithm by adding small level of noise that would
mask the artifacts, it would be interesting to study robustness to such
processes as well.
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[4] Paul Bießmann, Daniel Gärtner, Christian Dittmar, Patrick
Aichroth, Michael Schnabel, Gerald Schuller, and Ralf Geiger,
“Estimating mp3pro encoder parameters from decoded au-
dio,” in Proceedings of the 2nd Workshop Audiosignal- und
Sprachverarbeitung (WASP), Koblenz, Germany, September
2013.

[5] Tiziano Bianchi, Alessia De Rosa, Marco Fontani, Giovanni
Rocciolo, and Alessandro Piva, “Detection and localization of
double compression in mp3 audio tracks,” EURASIP Journal
on Information Security, 2014.

[6] Brian D’Alessandro and Yun Q. Shi, “Mp3 bit rate quality de-
tection through frequency spectrum analysis,” in Proceedings
of the 11th ACM Workshop on Multimedia and Security, New
York, NY, USA, 2009, MM&#38;Sec ’09, pp. 57–62, ACM.

[7] Jürgen Herre and Michael Schug, “Analysis of decompressed
audio-the inverse decoder,” in 109th AES Convention, Los An-
geles, California, USA, September 2000.

[8] Sascha Moehrs, Jürgen Herre, and Ralf Geiger, “Analysing
decompressed audio with the inverse decoder - towards an op-
erative algorithm,” in 112th AES Convention, May 2002.

[9] D. Seichter, L. Cuccovillo, and P. Aichroth, “Aac encoding
detection and bitrate estimation using a convolutional neural
network,” in 2016 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), March 2016, pp.
2069–2073.

[10] Rui Yang, Zhenhua Qu, and Jiwu Huang, “Detecting digital
audio forgeries by checking frame offsets,” in Proceedings
of the 10th ACM Workshop on Multimedia and Security, New
York, NY, USA, 2008, pp. 21–26, ACM.
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