Feuille de TD 2 : continuité et dérivabilité

Exercice 1. Vrai ou faux

- 1. Pour tout $x \in \mathbb{R}$, $\exp(\ln(x)) = x$.
- 2. Une fonction continue est dérivable.
- 3. Pour tout $x \in \mathbb{R}$, $(\sqrt{x})^2 = x$.
- 4. Pour tout $x, y \in \mathbb{R}$, |x + y| < |x| + |y|.
- 5. Une fonction f dérivable et strictement croissante sur \mathbb{R} a une dérivée strictement positive.

Exercice 2. Continuité - raccord

Déterminer les paramètres a et b pour que les fonctions suivantes soient continues :

$$f(x) = \begin{cases} 5, & x < -2 \\ ax + b, & -2 \le x < 1 \\ \ln(x), & x > 1 \end{cases}, \qquad g(x) = \begin{cases} 2ax + ax^2, & x \ge 1 \\ \cos(\pi x), & x < 1 \end{cases}.$$

Exercice 3. Fonction partie entière

On rappelle que E est la fonction partie entière, c'est-à-dire la fonction qui associe à tout réel l'unique entier relatif qui lui est directement inférieur. (exemples : E(1) = 1, E(1.5) = 1, $E(\pi) = 3$, E(-1.5) = -2). Etudier la continuité sur \mathbb{R} des fonctions suivantes :

- 1. f(x) = E(x),
- 2. g(x) = xE(x),
- 3. $h(x) = \sin(\pi x)E(x)$.

Exercice 4. Dérivabilité et continuité

Soit $f: \mathbb{R} \to \mathbb{R}$ continue et dérivable en 0, telle que f(0) = 0. Montrer que la fonction définie pour $x \neq 0$ par $g(x) = \frac{f(x)}{x}$ peut se prolonger par continuité en 0. Que se passe-t-il si $f(0) \neq 0$?

Exercice 5. Dérivabilité - raccord

Déterminer $a,b\in\mathbb{R}$ de manière à ce que la fonction f définie sur \mathbb{R}_+ par :

$$f(x) = \sqrt{x}$$
 si $0 \le x \le 1$ et $f(x) = ax^2 + bx + 1$ si $x > 1$

soit dérivable sur \mathbb{R}_+^*

Exercice 6. Dérivabilité - raccord

Soit f la fonction définie sur \mathbb{R} par

$$f(x) = \begin{cases} \cos(\sin(x)) & \text{si } x \le 0\\ 1 + x^2 \ln(1+x) & \text{si } x > 0 \end{cases}$$

- 1. *f* est-elle continue?
- 2. Calculer la dérivée de f sur \mathbb{R}^* . f est-elle dérivable en 0?

Exercice 7. Calcul de tangente

Ecrire l'équation de la tangente à la courbe des fonctions suivantes au point d'abscisse x=0.

- 1. $f(x) = x^2 + x + 1, x \in \mathbb{R}$
- 2. $g(x) = \tan(x), x \in (-\pi/2, \pi/2)$
- 3. $h(x) = \exp(4x), x \in \mathbb{R}$